Значение слова «гиперзвук»
-
ГИПЕРЗВУ́К, -а, м. Физ. Звуковые колебания сверхвысокой частоты.
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
-
Гиперзвук — упругие волны с частотами от 109 до 1012—1018 Гц. По физической природе гиперзвук не отличается от звуковых и ультразвуковых волн. Гиперзвук часто представляют как поток квазичастиц — фононов.
В воздухе при нормальных условиях гиперзвук не распространяется вследствие сильного поглощения. Наиболее существенны взаимодействия гиперзвука с квазичастицами в среде — с электронами проводимости, тепловыми фононами, магнонами.
Область частот гиперзвука соответствует частотам электромагнитных колебаний дециметрового, сантиметрового и миллиметрового диапазонов (т.н. сверхвысоким частотам — СВЧ). Используя технику генерации и приёма электромагнитных колебаний СВЧ, удалось получить и начать исследование частот гиперзвука ~ 1011 Гц.
Частоте 109 Гц в воздухе при нормальном атмосферном давлении и комнатной температуре соответствует длина волны гиперзвука 3,4·10−5 см или 340 нм, т. е. эта длина одного порядка с длиной свободного пробега молекул в воздухе при этих условиях. Поскольку упругие волны могут распространяться в упругой среде только при условии, что длины этих волн заметно больше длины свободного пробега в газах (или больше межатомных расстояний в жидкостях и твёрдых телах), то в воздухе и газах при нормальном атмосферном давлении гиперзвуковые волны не распространяются. В жидкостях затухание гиперзвука очень велико и дальность распространения мала. Сравнительно хорошими проводниками гиперзвука являются твёрдые тела в виде монокристаллов, но главным образом лишь при низких температурах. Так, например, даже в монокристалле кварца, отличающемся малым затуханием упругих волн, на частоте 1,5·109 Гц продольная гиперзвуковая волна, распространяющаяся вдоль оси Х кристалла, при комнатной температуре ослабляется по амплитуде в 2 раза при прохождении расстояния всего в 1 см. Однако имеются проводники гиперзвука лучше кварца, в которых затухание гиперзвука значительно меньше (например, монокристаллы сапфира, ниобата лития, железо-иттриевого граната и др.).
Долгое время гиперзвуковые волны не удавалось получать искусственным путём (в этом одна из причин выделения этой области спектра упругих волн, названной "гиперзвуком"), поэтому изучали гиперзвук теплового происхождения. Твёрдое кристаллическое тело можно представить как некоторую объёмную пространственную решётку, в узлах которой расположены атомы или ионы. Тепловое движение представляет собой непрерывные и беспорядочные колебания этих атомов около положения равновесия. Такие колебания можно рассматривать как совокупность продольных и поперечных плоских упругих волн самых различных частот — от самых низких собственных частот упругих колебаний данного тела до частот 1012—1013 Гц (далее спектр упругих волн обрывается), распространяющихся по всевозможным направлениям. Эти волны называют также дебаевскими волнами, или тепловыми фононами.
Фонон представляет собой элементарное возбуждение решётки кристалла или квазичастицу. Фонону соответствует плоская упругая волна определённой частоты подобно тому, как фотону соответствует плоская электромагнитная волна определённой частоты. Тепловые фононы имеют широкий спектр частот, тогда как искусственно получаемый гиперзвук может иметь какую-нибудь одну определенную частоту. Поэтому искусственно генерируемый гиперзвук можно представлять как поток когерентных фононов. В жидкостях тепловое движение имеет характер, близкий к характеру теплового движения в твёрдых телах, поэтому в жидкостях, как и в твёрдых телах, тепловое движение непрерывно генерирует некогерентные гиперзвуковые волны.
До того, как стало возможным получать гиперзвук искусственным путём, изучение гиперзвуковых волн и их распространения в жидкостях и твёрдых телах проводилось, главным образом, оптическим методом. Наличие гиперзвука теплового происхождения в оптически прозрачной среде приводит к рассеянию света с образованием нескольких спектральных линий, смещенных на частоту гиперзвука, т.н. рассеяние Мандельштама — Бриллюэна. Исследования гиперзвука в ряде жидкостей привели к открытию в них зависимости скорости распространения гиперзвука от частоты и аномального поглощения ги
Источник: Википедия
-
гиперзву́к
1. звуковые колебания сверхвысокой частоты (порядка 109 герц и выше)
Источник: Викисловарь
Похожие слова и словосочетания
- → пробой изоляции , векторная сумма , пучковое оружие , радиационные пояса , вращать турбину
- → электронный пучок , суммарная мощность , распад нейтрона , поверхностные волны , центробежный компрессор
- → химический лазер , реликтовый фон , напряжённость магнитного поля , межзвёздное облако , ускоритель заряженных частиц
- → атмосфера звезды , электродвижущая сила , тяговые электродвигатели , вынужденные колебания , метеорное тело
- → частотная модуляция , фотоэлектронный умножитель , индукционный ток , ионизированный газ , магнитный монополь